Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 44(9): 1073-1080, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35920962

RESUMO

OBJECTIVE: To produce high concentrations of hyperoside from quercetin using recombinant Escherichia coli with in situ regeneration of UDP-galactose. RESULTS: Sucrose synthase from Glycine max (GmSUS) was co-expressed with UDP-glucose epimerase from E. coli (GalE) in E. coli for regenerating UDP-galactose from UDP and sucrose. Glycosyltransferase from Petunia hybrida (PhUGT) was introduced to synthesize hyperoside from quercetin through the regeneration system of UDP-galactose. Co-expressing with molecular chaperones GroEL/ES successfully enhanced the catalytic efficiency of the recombinant strain, which assisted the soluble expression of PhUGT. By using a fed-batch approach, the production of hyperoside reached 863.7 mg L-1 with a corresponding molar conversion of 93.6% and a specific productivity of 72.5 mg L-1 h-1. CONCLUSION: The method described herein for hyperoside production can be widely applied for the synthesis of isorhamnetin-3-O-galactoside, kaempferol-3-O-galactoside and other flavonoids.


Assuntos
Escherichia coli , Quercetina , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Difosfato de Uridina/metabolismo
2.
Front Bioeng Biotechnol ; 9: 681666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268298

RESUMO

Ergosterol, a terpenoid compound produced by fungi, is an economically important metabolite serving as the direct precursor of steroid drugs. Herein, ergsosterol biosynthetic pathway modification combined with storage capacity enhancement was proposed to synergistically improve the production of ergosterol in Saccharomyces cerevisiae. S. cerevisiae strain S1 accumulated the highest amount of ergosterol [7.8 mg/g dry cell weight (DCW)] among the wild-type yeast strains tested and was first selected as the host for subsequent metabolic engineering studies. Then, the push and pull of ergosterol biosynthesis were engineered to increase the metabolic flux, overexpression of the sterol acyltransferase gene ARE2 increased ergosterol content to 10 mg/g DCW and additional overexpression of a global regulatory factor allele (UPC2-1) increased the ergosterol content to 16.7 mg/g DCW. Furthermore, considering the hydrophobicity sterol esters and accumulation in lipid droplets, the fatty acid biosynthetic pathway was enhanced to expand the storage pool for ergosterol. Overexpression of ACC1 coding for the acetyl-CoA carboxylase increased ergosterol content from 16.7 to 20.7 mg/g DCW. To address growth inhibition resulted from premature accumulation of ergosterol, auto-inducible promoters were employed to dynamically control the expression of ARE2, UPC2-1, and ACC1. Consequently, better cell growth led to an increase of ergosterol content to 40.6 mg/g DCW, which is 4.2-fold higher than that of the starting strain. Finally, a two-stage feeding strategy was employed for high-density cell fermentation, with an ergosterol yield of 2986.7 mg/L and content of 29.5 mg/g DCW. This study provided an effective approach for the production of ergosterol and other related terpenoid molecules.

3.
Biotechnol Lett ; 43(6): 1221-1228, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33666816

RESUMO

OBJECTIVE: To enhance biotin production in Escherichia coli by engineering a heterologous biotin synthetic pathway. RESULTS: Biotin operon genes from Pseudomonas putida, which consisted of a bioBFHCD cluster and a bioA gene, was engineered into Escherichia coli for biotin production. The introduction of bioW gene from Bacillus subtilis, encoding pimeloyl-CoA synthetase and sam2 gene from Saccharomyces cerevisiae, encoding S-adenosyl-L-methionine (SAM) synthetase contributed to the heterologous production of biotin in recombinant E. coli. Furthermore, biotin production was efficiently enhanced by optimization of the fermentation compositions, especially pimelic acid and L-methionine, the precursor related to the pimeloyl-CoA and SAM synthesis, respectively. The combination of overexpression of the heterologous biotin operon genes and enhanced supply of key intermediate pimeloyl-CoA and SAM increased biotin production in E. coli by more than 121-fold. With bioprocess engineering efforts, biotin was produced at a final titer of 92.6 mg/L in a shake flask and 208.7 mg/L in a fed-batch fermenter. CONCLUSION: Through introduction of heterologous biotin synthetic pathway, increasing the supply of precursor pimeloyl-CoA and cofactor SAM can significantly enhance biotin production in E. coli.


Assuntos
Bacillus subtilis/enzimologia , Vias Biossintéticas , Biotina/biossíntese , Escherichia coli/crescimento & desenvolvimento , Pseudomonas putida/enzimologia , Saccharomyces cerevisiae/enzimologia , Bacillus subtilis/genética , Técnicas de Cultura Celular por Lotes , Clonagem Molecular , Escherichia coli/genética , Fermentação , Engenharia Metabólica/métodos , Metionina/química , Óperon , Ácidos Pimélicos/química , Pseudomonas putida/genética , Saccharomyces cerevisiae/genética
4.
Biotechnol Lett ; 40(11-12): 1551-1559, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259222

RESUMO

OBJECTIVE: To strengthen NADH regeneration in the biosynthesis of L-2-aminobutyric acid (L-ABA). RESULTS: L-Threonine deaminase (L-TD) from Escherichia coli K12 was modified by directed evolution and rational design to improve its endurance to heat treatment. The half-life of mutant G323D/F510L/T344A at 42 °C increased from 10 to 210 min, a 20-fold increase compared to the wild-type L-TD, and the temperature at which the activity of the enzyme decreased by 50% in 15 min increased from 39 to 53 °C. The mutant together with thermostable L-leucine dehydrogenase from Bacillus sphaericus DSM730 and formate dehydrogenase from Candida boidinii constituted a one-pot system for L-ABA biosynthesis. Employing preheat treatment in the one-pot system, the biosynthesis of L-ABA and total turnover number of NAD+/NADH were 0.993 M and 16,469, in contrast to 0.635 M and 10,531 with wild-type L-TD, respectively. CONCLUSIONS: By using the engineered L-TD during endured preheat treatment, the one-pot system has achieved a higher productivity of L-ABA and total turnover number of coenzyme.


Assuntos
Aminobutiratos/metabolismo , Proteínas de Escherichia coli/química , NAD/metabolismo , Treonina Desidratase/química , Aminobutiratos/análise , Evolução Molecular Direcionada/métodos , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , Mutação , Treonina Desidratase/genética , Treonina Desidratase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...